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ABSTRACT
Speech eavesdropping has long been an important threat to the
privacy of individuals and enterprises. Recent research has shown
the possibility of deriving private speech information from sound-
induced vibrations. Acoustic signals transmitted through a solid
medium or air may induce vibrations upon solid surfaces, which
can be picked up by various sensors (e.g., motion sensors, high-
speed cameras and lasers), without using a microphone. To date,
these threats are limited to scenarios where the sensor is in contact
with the vibration surface or at least in the visual line-of-sight.

In this paper, we revisit this important line of research and show
that a remote, long-distance, and even thru-the-wall speech eaves-
dropping attack is possible. We discover a new form of speech eaves-
dropping attack that remotely elicits speech from minute surface
vibrations upon common room objects (e.g., paper bags, plastic stor-
age bin) via mmWave sensing, signal processing, and advanced deep
learning techniques. While mmWave signals have high sensitivity
for vibrations, they have limited sensing distance and normally
do not penetrate through walls. We overcome this key challenge
through designing and implementing a high-resolution software-
defined phased-MIMO radar that integrates transmit beamform-
ing, virtual array, and receive beamforming. The proposed system
enhances sensing directivity by focusing all the mmWave beams
toward a target room object, allowing mmWave signals to pick up
minute speech-induced vibrations from a long distance and even
through walls. To realize the attack, we design an object identi-
fication technique that scans objects in a room and identifies a
prominent object that is most sensitive to speech vibrations for
vibration feature extraction. We successfully demonstrate speech
privacy leakage using speech-induced vibrations via the develop-
ment of a deep learning framework. Our framework can leverage
domain adaptation techniques to infer speech content based only
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on the unlabeled vibration data of a victim.We validate the proof-of-
concept attack on digit recognition through extensive experiments,
involving 40 speakers, five common room objects, and attack sce-
narios with mmWave devices inside and outside the room. Our
phased-MIMO-based attack can achieve success rates of 88% ∼ 98%
and 64% ∼ 86% with and without using speech labels for training.
The success rates are 81% ∼ 94% and 58% ∼ 74% for thru-the-
wall attacks. Furthermore, we discuss possible defense methods to
mitigate this unprecedented security threat.
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1 INTRODUCTION
The unencrypted nature of voice makes speech eavesdropping al-
ways a lucrative attack as well as a core topic in computer security.
A user’s private information or an enterprise’s financial/intellectual
properties can be compromised if an adversary can listen onto
the voice communication channel. Lessons learned from numer-
ous cyber attacks triggered by voice leakage encourage people to
speak in soundproof environments, such as rooms deployed with
double-glazing glasses and sound absorption sheets.

Nonetheless, research studies reveal that voice communication
can still be compromised by leveraging vibrations produced by
speech. Motion sensors of the victim’s smartphones can be compro-
mised and exploited to sense speech played by loudspeakers [1, 3,
5, 31]. When speech is produced, vibrations can propagate through
a solid medium (e.g., a desk or the body of the smartphone) and
reach the motion sensors. Recent studies have shown the feasibility
of sensing such vibrations on the shell of loudspeakers/smartphones
throughwireless sensing techniques, such as those based on lasers [51],
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Figure 1: Illustration of possible attack scenarios through the
proposed eavesdropping attack based on mmWave sensing
upon speech-induced vibrations from room objects.

WiFi [53, 56] and ultra-wide-band (UWB) radars [54]. These stud-
ies show promising results, but rely on unrealistic assumptions,
where the sensor is in direct contact or visual line-of-sight between
the sensor and the sound source (or vibration source). A natural
question is whether we can capture airborne speech in scenarios in
which there is no direct contact or not even the visual line-of-sight.
Our work here suggests that this attack is indeed possible.

New eavesdropping attack via high-resolution phased-
MIMO radar sensing. In this work, we consider a new line of
attacks that targets minute speech-induced vibrations from common
room objects (e.g., paper bags, plastic storage bins, cardboard boxes).
When human speech interacts with surrounding objects, it is re-
flected, refracted, and absorbed, inducing minute vibrations upon
the objects’ surfaces. Based on this phenomenon, we discover a new
and stealthy speech eavesdropping attack that remotely captures
such minute vibrations leveraging commercial mmWave devices
as illustrated in Figure 1. The millimeter-level wavelength enables
mmWave signals to capture vibrations with orders of higher sen-
sitivity compared to traditional radio frequency techniques (e.g.,
WiFi, RFID). In addition, the integration of mmWave hardware onto
mobile and IoT devices (e.g., 5G routers, smart home sensors) makes
mmWave increasingly accessible and desirable for adversaries. A
recent study shows the success of eavesdropping speeches replayed
by smartphone earpieces [6] via mmWave under direct line-of-
sight scenarios. However, this kind of attack with a short distance
is easy to expose. Our attack capturing vibrations upon in-room
objects to achieve eavesdropping is very stealthy. A recent initial
work [35] demonstrates its possibility with a short distance, how-
ever, the short wavelength of mmWave signals incurs high signal
propagation loss, making practical in-room (or even thru-the-wall)
attacks difficult in reality. To tackle this inherent challenge, we
develop a software-defined high-resolution radar sensing scheme,
phased-MIMO radar, a technique that automatically adjusts sig-
nals applied to the transmitter and receiver antenna pairs to steer
multiple mmWave beams towards the vibrating object, aiming to
retain effective speech sensing even under long distances (e.g., >5m)
and even occlusion. The designed attack is feasible on commercial
mmWave off-the-shelf sensors without any hardware modifica-
tions, thus it posts high privacy concerns as the 5G era featured by
mmWave communication/sensing has approached.

Differences with existing attacks. The proposed attack shows
significant advantages over prior attacks relying on remote sensing:

Audio. Compared to traditional attacks via microphones, which
directly sense sounds, our attack uses mmWave sensing to remotely

turn room objects into acoustic sensors. It enables our attack to by-
pass sound insulation, which is designed to lock sounds (mechanical
waves) instead of mmWave signals (electromagnetic waves).

Vision. Research studies show the potential of capturing speech-
induced vibrations using vision sensors, such as lasers [48], high-
speed cameras [11], and lidars [41]. These attacks may leave visual
clues (e.g., laser dots, bulky cameras), and they rely on a visual
line-of-sight between the laser/camera and the vibrating object.
Differently, our attack does not have such limitations (an attack
through a non-opaque wall is demonstrated in Section 8.1).

Radio frequency (RF).Our attack based on mmWave has over 25×
and 65× higher resolution to minute displacements compared to
existing RF sensing in lower frequency bands, such as WiFi [53, 56]
and RFID [52]. Compared to eavesdropping based on conductive
vibrations generated by loudspeaker or earpiece [6], we target
speech vibrations upon room objects induced by airborne sounds,
which is far more challenging yet more practical.

Challenges addressed in eliciting speech via speech-induced
vibrations. We face several technical challenges to realize such
an attack in practice: 1) Unknown angle of target vibrating ob-
ject: Effective vibration sensing with the phased-MIMO radar re-
quires mmWave beams of all transmitter and receiver antenna pairs
steered towards the vibrating object. Thus, we need to precisely
detect the angle of interest where a target object with strong vi-
brations is located. 2) Unclear response to speech vibrations: The
mmWave signals capture speech-induced vibrations in terms of
phase changes, which are sensitive but susceptible to hardware and
environment noises. Therefore, effective algorithms for phase de-
noising and feature extraction are important for successful attacks.
3) Unavailability of labeled training data from the victim: Successful
speech inference relies on well-trained machine learning models,
while the labeled training data, especially those from the victim,
may not be available to the adversary in practice.

Overcoming the challenges. We design an attack system with
advanced radar sensing, signal processing, and deep learning tech-
niques to address the aforementioned challenges. 1) Beamforming
based on object identification: Our system scans through room ob-
jects and identifies a target object with the strongest vibration
responses for speech extraction. By integrating multiple advanced
radar sensing techniques, including transmit beamforming, virtual
array, and receive beamforming, our phased-MIMO radar enhances
sensing directivity by focusing all the mmWave beams towards the
target object, making speech sensing feasible from a long distance
and even through walls. 2) Phase calibration and feature extraction:
Our system then applies a series of signal processing techniques to
denoise phase values and extracts time-frequency features carrying
speech information. 3) Deep learning-based speech content inference:
Given the extracted features, our system performs speech recog-
nition by designing a deep learning framework. Our framework
leverages domain adaptation to infer speech content based only
on the unlabeled vibration data of a victim, without requiring the
victim’s any ground-truth speech labels for training. We believe
our work makes the following key contributions:

• A new form of speech eavesdropping:We discover a new line
of practical attacks that elicit speech fromminute speech-induced
vibrations upon common room objects throughmmWave sensing.
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It is the first work that shows a remote, long-distance, and thru-
the-wall eavesdropping attack based on micro-meter vibrations
induced by airborne speech is feasible in reality.

• A new attack system: We design a high-resolution software-
defined mmWave sensing scheme, phased-MIMO radar,which sig-
nificantly enhances the signal-to-noise ratio on sensing speech-
induced vibrations. We further design an attack system that in-
corporates a series of signal processing, feature extraction, and
deep learning techniques to infer sensitive contents.

• A new attack analysis:We validate the proof-of-concept attack
by conducting extensive experiments involving speeches of 50
speakers (i.e, 10 live speakers and 40 speakers from a public
audio dataset) and 5 common room objects under various attack
settings. Our attack can achieve success rates of 88% ∼ 98% and
58% ∼ 74% for recognizing 10 digits with and without using
victims’ speech labels for training.

• A new defense study: We discuss and study a set of passive
and active defense methods to protect users’ speech privacy from
this unprecedented threat.

2 PRELIMINARY STUDY
2.1 Object Surface Vibration Model
During speech production, the sound source modulates the air
into sinusoidal harmonic waves (acoustic signals), which propagate
through the air in an omnidirectional manner and can be perceived
by human ears. When the signals interact with surrounding objects
(e.g., printers, plastic storage bins, paper bags), they are reflected,
refracted, and absorbed as illustrated in Figure 2(a), causing the
surfaces of those objects to vibrate. We refer to the vibrations upon
the object’s surface as speech-induced vibrations. On a closer look,
the speech-induced vibrations are caused by the pressure upon the
object’s surface by the incident acoustic signals. Considering an
incident angle of 𝜃 , the pressure on the object surface caused by
the incident acoustic signal can be described as:

𝑝𝑖 (𝑡) = 𝐴(𝑡) cos𝜃 · 𝑒 𝑗𝜙 (𝑡 ) , (1)
where 𝐴(𝑡) and 𝜙 (𝑡) are the time-series amplitude and phase of
the acoustic signal encoded with speech information. In addition,
the acoustic signal reflected by the object’s surface also excites the
object and applies additional pressure [10]. The overall acoustic
pressure applied to the object surface is represented as:

𝑝 (𝑡) = 𝑝𝑖 (𝑡) + 𝑝𝑟 (𝑡)

= (1 + Γ)𝐴(𝑡) cos𝜃 · 𝑒 𝑗𝜙 (𝑡 ) ,
(2)

where Γ is a reflection rate determined by the material of the object.
We can find that the overall pressure 𝑝 (𝑡) is directly related to the
amplitude 𝐴(𝑡) and phase 𝜙 (𝑡) of the acoustic signals. Note that a
small proportion of the acoustic signal is refracted at the object’s
surface and propagates through the object. These signals do not
generate vibrations on the object’s surface [23].

The acoustic pressure 𝑝 (𝑡) causes the object surface to have
minute displacements, which are at the order of micrometer [35].
Under the same intensity of acoustic pressure, the magnitude of
surface displacement is determined by the material and thickness of
the object. We mathematically model the displacement of an object
using a spring-mass system as illustrated in Figure 2(b). We denote
Young’s modulus [7] of the object as 𝐸, which reflects the stiffness
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(a) Speech-induced vibrations
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(b) Minute surface displacement caused by speech vibrations

Figure 2: Illustration of capturing speech-induced vibrations
in terms of surface displacement of room objects.

of the object, while the thickness of the object is represented by 𝐿.
When an overall acoustic pressure 𝑝 (𝑡) is applied, we have:

𝑑 (𝑡) = 𝑝 (𝑡)
𝐸

· 𝐿. (3)
The displacement of the object surface 𝑑 (𝑡) has a linear relationship
with 𝑝 (𝑡), which indicates that speech information carried in the
sound pressure is encoded into the surface displacements 𝑑 (𝑡). It is
noted that the displacement is also infected by the surface area of
the object, which is merged with the pressure load and represented
as 𝑝 (𝑡) in Equation (3). The equation indicates that objects with
smaller Young’s modulus are more sensitive to acoustic pressure.
We showcase Young’s modulus of common room objects in Table 1.

2.2 Sensing Speech-induced Vibration via
mmWave

We utilize mmWave sensing based on Frequency-Modulated Con-
tinuous Wave (FMCW) [47] to extract speech-induced vibrations.

Object-to-radar distance detection. To sense the vibrations
of an object, we first need to determine the distance between the
radar and a target object picking up the airborne acoustic signals.
Particularly, we utilize a mmWave sensor that transmits and re-
ceives sequences of chirps with linearly increasing frequency in a
fixed slope. The distance between the radar and the object can be
calculated based on the frequency difference between the transmit-
ted and the received chirps. Considering the slope of the chirp as 𝛽 ,
the distance between the radar and the object can be calculated by:
𝑟 (𝑡) = Δ𝑓 (𝑡 )

𝛽
, where Δ𝑓 (𝑡) denotes the frequency difference. The

distance detection procedure can be realized by applying dechirp
and range-FFT operations on the received mmWave signals [38]. As
we are interested in deriving vibrations upon the object’s surface,
we decompose the estimated distance into two parts, 𝑟 (𝑡) = 𝑟 +𝑑 (𝑡),
including the static distance between the object and the radar 𝑟 and
the surface displacements (vibrations) of the object 𝑑 (𝑡).
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Figure 3: Illustration of capturing speech-induced vibrations using a tinfoil through mmWave sensing. The surface vibrations
of the tinfoil can be captured in terms of phase changes of the received mmWave signals.

Capturing vibrations via phase extraction. The resolution of
detected distance 𝑟 (𝑡) is determined by the bandwidth. Commercial
mmWave sensors normally have a 4𝐺𝐻𝑧 bandwidth [38], and the
distance resolution is around 3.75𝑐𝑚, which is not sufficient for
capturing micrometer-level vibrations. Instead of using 𝑟 (𝑡), our
attack leverages the phase changes of the echoed signals at the
distance 𝑟 , which can measure the displacement in a scale even
smaller than the wavelength of the mmWave signals:

Δ𝜙 (𝑡) = 2𝜋𝑑 (𝑡)
𝜆

+ Δ𝜙𝑛, (4)

where 𝜆 is the wavelength of the mmWave signal and Δ𝜙𝑛 (𝑡) de-
notes the phase noise due to the signal propagation and hardware.
The phase changes Δ𝜙 are linearly related to the surface displace-
ments 𝑑 (𝑡) that are encoded with speech information. Given a
77𝐺𝐻𝑧mmWave radarwith a short wavelength of 3.89𝑚𝑚, mmWave
sensing can achieve a displacement resolution of 0.59𝑢𝑚 when the
phase noise Δ𝜙𝑛 is 9.76 × 10−4 rads, i.e., any displacement larger
than that will be detected and considered as the observed vibrations.

2.3 Proof of Concept
We conduct a preliminary experiment to validate the feasibility of
using a commercial mmWave sensor to capture speech-induced
vibrations of digits. The experimental setup is shown in Figure 3(a).
Specifically, we use a pair of loudspeakers (i.e., Logitech Z623 loud-
speakers) to play acoustic signals of three digits (i.e., “zero", “one",
and “two") at a sound pressure level of 70𝑑𝐵. A 77𝐺𝐻𝑧 mmWave
radar (i.e., TI AWR2243) is used to sense the surface vibrations.
We place a tinfoil to capture the speech-induced vibrations. The
loudspeaker-to-object and the object-to-radar distances are all 0.5𝑚.
We apply short-time Fourier transform (STFT) to the phase of
mmWave data after performing dechirp and range-FFT operations.
The spectrograms of the phases of the three digits are shown in Fig-
ure 3(b), 3(c), and 3(d).We can observe that the tinfoil can respond to
speech vibrations of the three digits with different time-frequency
patterns, indicating that speech-induced vibrations can be captured.

3 THREAT MODEL AND ATTACK OVERVIEW
3.1 Advantages of Exploiting Speech-induced

Vibrations via mmWave
No direct contact. Our attack does not require any direct contact
between the sound source and the object capturing speech vibra-
tions. In contrast, prior attacks via motion sensors [1, 3, 5, 31] focus

Table 1: Approximate Young’s modulus for various objects

Object Major Material Young’s modulus E (GPa)

Tinfoil Tin 68 [27]
Glass window Float glass 47.7 [25]

Plastic storage bin Polypropylene 1.68 [28]
Cardboard box Corrugated cardboard 0.644 [2]
Digital TV Multiple materials 22.68 [18]
Drone Carbon-fiber-reinforced plastic 183 [36]

Steel cabinet Steel 200 [26]

on the scenarios of using built-in motion sensors of smartphones
to pick up conductive vibrations from a shared solid medium.

Hard to be noticed.With the proposed phased-MIMO radar, our
attack can be launched inside common room sizes without exposing
the eavesdropping device. Prior attacks based on lasers/lidars [12,
41] will leave visual clues on the object (e.g., a laser dot). The bulky
high-speed cameras [11] are also easy to expose.

No visual line-of-sight. Our attack can leverage the penetra-
tion property of mmWave to capture speech-induced vibration
through opaque obstacles. Prior works explore using laser vibrom-
eters to capture surface vibrations caused by speeches [12, 51]. But
these attacks rely on a visual line-of-sight between the laser/camera
and the surface, which precludes scenarios with visual occlusion.
Differently, our attack does not have such a limitation. We con-
firmed this via through-wooden(opaque)-wall attacks in Section 8.1.

3.2 Attack Scenarios
We consider scenarios where an adversary aims to eavesdrop on
speeches produced by either a playback device of a victim or the vic-
tim himself/herself. The adversary can compromise a 5G/mmWave-
enabled IoT device to launch the attack. There has been a grow-
ing trend of deploying mmWave modules on in-room IoT devices
(e.g., 802.11ad WiFi routers) to support high-precision sensing and
high-throughput wireless communication. For example, mmWave
sensors have been used in intrusion detection [15], robot naviga-
tion [42], and hands-free appliance control [4]. These devices and
sensors are interconnected and linked to the Internet, and they nor-
mally lack security protection [44]. An adversary may compromise
the devices by exploiting software vulnerabilities on a large scale
(e.g., injecting malicious code [55], attacking access control [50],
and exploiting vulnerable software [30]). For example, the adver-
sary can spread malicious scripts over a local network of a company
to compromise some of the unsecured IoT devices (e.g., using the
devices’ factory default login information) and re-program them
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for our attack. In addition, the adversary can even launch more pro-
found attacks by using a commercial mmWave device to perform
eavesdropping attacks in a different location/room. The adversary
can leverage the penetration properties of mmWave signals to sense
speech-induced vibrations inside a soundproof room, such as those
installed with soundproof barriers, which prevents traditional audio
eavesdropping. The acoustic signal will be absorbed if the barri-
ers are soundproof, while our attack can be launched outside the
room to sense surface vibrations of in-room objects, which is much
more practical compared to traditional eavesdropping attacks via
microphones, cameras, lasers, etc.

3.3 Adversary’s Capability
Supervised training with victim’s labeled data. The adversary
will collect the victim’s audio samples for generating speech vi-
brations and obtaining speech labels for training. For instance, the
adversary can obtain audio samples from the victim’s publicly ex-
posed speech (e.g., YouTube, Zoom Webinar). He/she then uses a
loudspeaker to replay the audio samples to generate vibrations on
similar room objects, which can be collected using the adversary’s
mmWave device. As the audio samples are available, the adversary
can easily generate speech labels for the collected mmWave data
to train a speech recognition model.

Unsupervised training via domain adaptation. The adver-
sary will leverage the victim’s mmWave data collected during the
attack phase to perform domain adaptation, without requiring audio
samples or speech labels from the victim. Particularly, the adversary
has a pre-trained speech recognition model built on other people’s
labeled data. The collected unlabeled data of the victim (mmWave
data) during the attack phase is utilized to update the parameters
of the pre-trained model in an unsupervised fashion, making the
model better fit the victim’s feature space.

3.4 Challenges of Adversary
Low signal-to-noise ratio (SNR) for remote vibration sensing.
The resolution of displacement sensing is affected by the level of
phase noises (i.e.,Δ𝜙𝑛 (𝑡) in Eq. (4)). The phase noises can be induced
by mmWave signal propagation over the air. The noises will be
particularly significant when sensing in-room objects through a
room barrier (e.g., a wall or a window), which greatly decays the
mmWave signals. We need to design techniques to enhance the
SNR for capturing speech vibrations.

Interference of non-vibration-sensitive objects.As discussed
in Section 2.1, room objects with relatively smaller Young’s modu-
lus normally have stronger responses to airborne acoustic signals.
To achieve effective speech-induced vibration extraction, we need
to identify/localize these objects and decouple the corresponding
mmWave reflections from other room objects, such as those with
large Young’s modulus and weaker vibrations.

Unreliable speech characteristics from passive speech vi-
brations. The airborne acoustic signal undergoes complex trans-
formations before being captured in mmWave data. The distor-
tions render low-fidelity speech characteristics in passive speech
vibrations. For example, over-the-air propagation attenuates acous-
tic signals at high frequencies [34]. In addition, successful speech
recognition relies on well-trained deep learning models, while the
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Figure 4: Overview of the proposed attack system.

labeled mmWave data encoding speech-induced vibrations, espe-
cially those from the victim, may not be available in practice. We
need to derive reliable speech representations for the victim.

3.5 Overview of Attack System
We design an attack system to address the three aforementioned
challenges, with the architecture shown in Figure 4.

Speech vibration enhancement via TDMphased-MIMO.We
design a high-resolution time-division multiplexing (TDM) phased-
MIMO radar based on advanced radar sensing techniques, including
transmit beamforming, virtual array, and receive beamforming. Par-
ticularly, our scheme steers all the mmWave beams (i.e., the angle
where the energy of mmWave signals is confined) towards the
vibrating object to enhance the strength of its signal reflections,
making the mmWave sensing retains its effectiveness under long
distances and through walls. Our scheme further utilizes MIMO
techniques to constructively integrate mmWave data from all trans-
mitting and receiving pairs to boost the SNR.

Vibration feature extraction.Our system examines the phases
of mmWave data across all distances and angles to identify an object
with the strongest vibrations. By combining object identification
with the phased-MIMO scheme, our system makes the mmWave
sensing focus only on the desired vibrating object in both angle
and distance dimensions. Our system then applies a series of signal
processing techniques for denoising and extracts time-frequency
features that encode speech information.

Deep learning-based speech content inference.We design a
deep learning-based framework to recognize the encoded speech
content. If the victim’s mmWave data and speech labels can be ob-
tained, our framework correlates the time-frequency features of the
mmWave data with the speech labels to train a deep learning model
with a speech classifier (supervised training) for speech recognition.
Otherwise, our framework utilizes only the mmWave data of the
victim to adapt a pre-trained model built on other people’s data
through domain adaptation (unsupervised training). The adapted
model better fits the victim’s feature space, and it can be used to
infer the victim’s speech content.
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Figure 5: Implementation of phased-MIMO scheme based on
a TI AWR2243 mmWave sensor with 3 TX and 4 RX, which
gives rise to a receiving virtual array with 8 RX antennas.
Two time slots are used to avoid overlapping elements.

4 SPEECH VIBRATION ENHANCEMENT VIA
PHASED-MIMO RADAR

The proposed attack needs to reliably capture the minute speech-
induced vibrations upon object surfaces (i.e., 𝑑 (𝑡) in Equation (3)),
which are on the order of a micrometer. Prior works [6, 35, 59] show
the potential of recovering sounds or speeches using mmWave,
but the small wavelength of mmWave signals renders significant
propagation loss and low penetration capability. This characteristic
results in low SNR of remote sensing on speech-induced vibrations,
especially under long-distance and thru-the-wall attack scenarios.

To address this challenge, we design a high-resolution mmWave
sensing scheme. For a sequence of frequency-modulated mmWave
chirps to transmit, our scheme splits the chirps into several groups
and leverages a subset of transmitter antennas (i.e., a phased array)
to send each group of chirps. By applying additional phases to the
transmitter antennas, the beam of mmWave signals is tuned to
focus on a specific direction where the vibrating object is located.
In addition, we extend the size of the receiver array by synthesiz-
ing a virtual receiver array, which significantly improves the dis-
placement sensing resolution (i.e., aperture [33]) of mmWave. Our
scheme then applies a time-division multiplexing (TDM)-MIMO
operation to combine received signals from all receiver antennas.

4.1 Analog Transmit Beamforming
As a combination of MIMO radar and phased array, our software-
defined phased-MIMO radar integrates the advantages of both tech-
niques in the sense that the radar transmits orthogonal signals,
each feeding a phased array structure. The orthogonal signals en-
able the construction of the virtual array which enjoys a longer
aperture, while the phased array structure enables analog beam-
forming which focuses the transmit power on the desired target.
Here, the TDM strategy is deployed to achieve orthogonality in the
time domain. In each time slot, the weighted version of the same
chirp signal will be transmitted by the phased array, where the
weight will be different between slots. During different slots, the
transmitted signals can be separated at the receiver. The orthog-
onality allows one to formulate a virtual array with an increased
aperture. The independent observations of the object obtained at
the virtual array enable improved estimation of the vibrations.

We consider a transmitter that has a uniform linear array (ULA)
with 𝑁𝑡 transmit antennas (TXs) spaced apart by 𝑑𝑡 , and a receiver
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Figure 6: Comparing the vibration sensing sensitivity (SNR)
of the proposed phased-MIMO radar and traditional single-
channel phased array with an in-room mmWave device.

that has a ULA with 𝑁𝑟 receive antennas (RXs) spaced apart by 𝑑𝑟 .
The array transmits FMCW chirp signals in a time-slotted fashion.
In each slot, each TX transmits a weighted version of baseband
waveform 𝑥 (𝑡), using different weights between slots. The weights
are chosen so that the transmissions of all antennas add up coher-
ently in the direction of the object. By using different weights in
each slot. we create different channels that provide diversity in
observing the same object and thus can lead to improved SNR. The
weights for the 𝑝-th time slot are represented as:

w𝑝 (𝜃 ) = 𝑒 𝑗2𝜋𝑝𝛼 (𝜃 ) [1, 𝑒− 𝑗2𝜋𝛼 (𝜃 ) , . . . , 𝑒− 𝑗2𝜋 (𝑁𝑡−1)𝛼 (𝜃 ) ]𝑇

= 𝑒 𝑗2𝜋𝑝𝛼 (𝜃 )a𝑡 (𝜃 ),
(5)

where𝛼 (𝜃 ) = 𝑑𝑡
sin(𝜃 )

𝜆
is the normalized propagation delay between

antennas on direction 𝜃 , 𝜆 is the wavelength of signal and a𝑡 (𝜃 ) is
the transmit steering vector.

Considering 𝜃0 as the direction of the object, the signal transmit-
ted in the 𝑝-th slot towards direction 𝜃 is:

𝑧𝑝 (𝑡, 𝜃 ) = a𝐻𝑡 (𝜃 )w𝑝 (𝜃0)𝑥 (𝑡) = 𝑏𝑝 (𝜃 )𝑥 (𝑡),

𝑠 .𝑡 . 𝑏𝑝 (𝜃 ) = 𝑒 𝑗2𝜋𝑝𝛼 (𝜃 )
𝑁𝑡−1∑︁
𝑛=0

𝑒 𝑗2𝜋𝑛[𝛼 (𝜃 )−𝛼 (𝜃0 ) ] ,
(6)

where {·}𝐻 denotes the conjugate transpose operation. The power
of the transmitted signal at direction 𝜃 from the 𝑝-th slot is:

𝑄 (𝜃 ) = 𝐸{𝑧𝑝 (𝑡, 𝜃 )𝑧𝐻𝑝 (𝑡, 𝜃 )} = |𝑏𝑝 (𝜃 ) |2𝑄𝑥 (7)
where 𝑄𝑥 is the baseband signal power. One can see that 𝑏𝑝 (𝜃0) =
𝑁𝑡 , and the transmitted power is maximized at direction 𝜃0. The
focused power facilitates the estimation of the displacement on the
surface 𝑟 (𝑡) and the corresponding phase change Δ𝜙 (𝑡), making
the estimation more robust to the noise Δ𝜙𝑛 (𝑡) (see Eq.(4)). Also,
the signal transmitted towards direction 𝜃0 in each slot is the same
as that of a TDM-MIMO radar using the same array, except that it
is amplified by the number of antennas. The boosted SNR makes it
more feasible to capture the minute surface displacements induced
by airborne acoustic signals.

4.2 Virtual Array and Receive Beamforming
Our attack synthesizes a virtual array to increase the sensing reso-
lution. At a receiver side with 𝑁𝑟 receiving antennas, after mixing
with the conjugate of the transmitted signals and stacking the re-
ceived signals from 𝑃 slots, we can formulate a virtual array of
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Figure 7: Comparing the vibration sensing sensitivity (SNR)
of the proposed phased-MIMO radar and single-channel
phased array radar under the thru-the-wall attack scenario.

𝑃 × 𝑁𝑟 elements with steering vector:

a𝑣 (𝜃 ) = a𝑟 (𝜃 ) ⊗ [1, . . . , 𝑒 𝑗2𝜋 (𝑃−1)𝛼 (𝜃 ) ]𝑇 ∈ C𝑃𝑁𝑟 ×1 (8)

where a is the receive steering vector and ⊗ denotes the Kronecker
product. It provides a larger aperture than that of the physical
receiver array. The output of the virtual array is formulated as:
y𝑣 (𝑡) = 𝑁𝑡a𝑣 (𝜃0)𝑥 (𝑡 − 𝜏)𝑥𝐻 (𝑡),

where 𝜃0 is the direction of the object. On the outputs of the
virtual array, receiver digital beamforming is further leveraged to
focus on the energy of echoed signals coming from the desired
direction. By applying the digital beamformer w𝑣 = a𝑣 (𝜃0), the
final output signal can be represented as:

𝑧 (𝑡) = w𝐻
𝑣 y𝑣 (𝑡)

= 𝑁𝑡𝑃𝑁𝑟𝑥 (𝑡 − 𝜏)𝑥𝐻 (𝑡) . (9)

By combining transmit beamforming, virtual array, and receive
beamforming, the SNR for sensing speech-induced vibrations can
be significantly increased. Our attack system then applies FMCW
techniques to the mmWave signals 𝑧 (𝑡) to detect the distance to the
vibration object and then extract phases from it, as we introduced
in Section 2.2.

4.3 TDM Phased-MIMO Radar Implementation
Our TDM phased-MIMO radar is a software-defined scheme to com-
pute/optimize the phase applied to each transmitting/receiving an-
tenna for beamforming. It can be deployed on commercial mmWave
devices (e.g., mmWaveWiFi routers/sensors) with an antenna array.
We showcase our implementation on a single off-the-shelf automo-
tive mmWave device (i.e., TI mmWave module AWR2243 [49]) with
a frequency range of 76 ∼ 81𝐺𝐻𝑧. The layout of our implementa-
tion is illustrated in Figure 5. The mmWave device has 3 transmitter
antennas (TXs) spaced apart by a wavelength (i.e., 3.89mm), and
4 receiver antennas (RXs) spaced apart by half of the wavelength
1.95𝑚𝑚. We implement the analog transmit beamforming on the
3 TXs (𝑁𝑡 = 3) by utilizing the built-in phase shifters. The phases
obtained with Equation (5) are applied to the phase shifters, ren-
dering the mmWave beam focusing on the direction of interest.
We synthesize two virtual antenna arrays (i.e., 𝑃 = 2 and 𝑁𝑟 = 4)
by using time slot 0 and time slot 1, respectively. We thus have 8
receiver antennas in total. Then, we apply the receive beamforming
as we have shown in Equation (9).

Table 2: Chirp configurations used for mmWave sensing

Radar Parameter Value

Frequency Slope, S 180.470𝑀𝐻𝑧/𝜇s
Idle Time 5𝜇s

ADC Samples 256
ADC Sample Rate 23𝑀𝐻𝑧

Ramp End Time 16.8𝜇
Number of chirp Per frame 11000

Chirp period,𝑇𝑠 21.8𝜇s
Slow-time Sampling Frequency, 𝑓𝑠=1/𝑇𝑠 11467.89𝐻𝑧

Chirp sweeping bandwidth 2.008𝐺𝐻𝑧

We apply FMCW upon the implemented phased-MIMO radar to
measure speech-induced vibrations. The chirp parameters setting
are summarized in Appendix Table 2. We conduct experiments to
compare the performance of phased-MIMO and traditional single-
channel phased-array. We use the same experimental setting as our
preliminary study in Section 2.3. We show the frequency-specific
SNR [54] of the phased-MIMO and traditional phased array that
only employs transmit beamforming. The higher the SNR the better
the sensing capability will achieve. We can observe that phase-
MIMO has around 10𝑑𝐵 higher SNR compared to phased array,
meaning that it is more sensitive to minute speech-induced vibra-
tions. We further examine the capability of our phased-MIMO radar
on picking up speech-induced vibrations through a glass wall, as
we showed in Figure 7(a). Under this setting, we can find that the
single-channel phased array has an SNR close to 0. In compari-
son, our phased-MIMO radar has over 2dB in a frequency range of
94 ∼ 794𝐻𝑧, where richer speech information is captured.

5 VIBRATION FEATURE EXTRACTION
5.1 Speech Vibration Extraction via Object

Identification
Angle Derivation. In practical attack scenarios, some room objects
will capture stronger speech-induced vibrations, which can be lever-
aged as target objects. To realize the angle detection of such objects,
we utilize Sparse Asymptotic Minimum Variance (SAMV) [1], a
super-resolution angle estimation algorithm to detect the angle of
strong reflectors. Compared to the traditional multiple signal clas-
sification (MUSIC) algorithm, the SAMV algorithm is more feasible
on devices with a small number of receiver antennas, which suites
commercial mmWave devices normally equipped with a smaller
size receiver array compared to dedicated radars.

Distance Derivation. Given the angle of interest, our attack
further determines the distance an object of interest with promi-
nent vibration responses and then only extracts phases from the
distance (range) of the object. It allows the extracted phases to
contain strong speech vibrations while removing the impacts of
all other objects. Our attack system determines the distance of an
object with the strongest vibrations through two steps. We first
determine a set of candidate distances potentially having objects
with strong reflections by using the range-FFT. We show an exam-
ple range profile in Figure 8, where some objects that have strong
signal reflections (e.g., tinfoil, steel cabinet, and refrigerator) exhibit
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Figure 8: Illustration of identifying object distance (i.e., range
bin) with the strongest vibration responses through examin-
ing the Kurtosis of the phase.

high Range-FFT magnitude. This observation motivates us to use
a threshold-based method upon range-FFT magnitude to detect
these objects. As we discuss in Section 2.1, solely relying on sig-
nal strength does not guarantee strong speech-induced vibrations,
as some objects with large Young’s modulus (e.g., steel cabinet)
have strong reflections but are not sensitive to speech. To deal with
this problem, we design a second step to examine the vibration
responses on all candidate objects and select one with the strongest
vibration responses for speech-induced vibration extraction. We
find that phase segments are normally heavy-tailed when the object
is vibrating (e.g., a human subject is speaking). We use Kurtosis [57]
to capture and quantify the degree of tailedness of vibrations as
Kurtosis is a common statistical metric to quantify the tailedness of
data. In our case, the larger the Kurtosis, the more likely the object
has strong vibration responses to speech. Note that an adversary
could monitor the mmWave phase within a long period to ensure
that the analysis involves phase segments of human speeches. We
show the Kurtosis values of phases from the three objects in Fig-
ure 8, and we observe that the tinfoil with the highest Kurtosis
value shows stronger and clearer speech vibrations compared to
the other two objects, which confirms its effectiveness.

5.2 mmWave Phase Calibration
The extracted mmWave phases containing speech-induced vibra-
tions could experience phase drifts caused by temperature and
humidity variations, which normally exceed the normal range of
speech vibrations.We calibrate these phase drifts based on the phase
differences across time points: 𝛿𝜙 (𝑡) = 𝜙 (𝑡) − 𝜙 (𝑡 − 1), where 𝜙 (𝑡)
denotes the phase value at time point 𝑡 . If the absolute value of 𝛿𝜙 (𝑡)
exceeds a pre-defined threshold, which we empirically choose 0.022,
𝜙 (𝑡) will be replaced by a new value computed by the Lagrange in-
terpolation [9] using previous three phases𝜙 (𝑡−3), 𝜙 (𝑡−2), 𝜙 (𝑡−1).
We further calibrate the phase values by applying a bandpass fil-
ter with a cut-off frequency of 85𝐻𝑧 ∼ 3000𝐻𝑧. The fundamental
frequency of the human voice is over 85𝐻𝑧. The threshold 0.022
is associated with a high vibration magnitude of 1.42𝑚𝑚. Human
speech can hardly exceed this value, and it can thus be used as an
upper bound to exclude abnormal phase values. In addition, we find
that speech-induced vibrations normally have vibration responses
below 3000𝐻𝑧, though human voice captured by microphones may
reach higher frequencies. The reason is that the diaphragm used
in microphones has a much smaller Young’s modulus compared

to common room objects. It is more sensitive to high-frequency
parts of speech which could be significantly attenuated during
over-the-air propagation. We thus use 3000𝐻𝑧 as the upper bound.

5.3 Time-frequency Feature Extraction
We extract spectrograms from the calibrated phases as the time-
frequency features, which has been shown effective in various
acoustic sensing tasks. Our system first detects phase segments
involving human speech by examining the moving variance of the
phases. The regions of human speech have relatively higher vari-
ances compared, and thus they can be segmented with a threshold.
Then, our system computes the short-time Fourier transform rep-
resentations of the phase segment using a sliding time window. We
use a sliding window with a width of 25𝑚𝑠 , shifting 10𝑚𝑠 each step.
For each time window, we apply 512 − 𝑝𝑜𝑖𝑛𝑡 FFT to derive energy
distribution across frequencies. The magnitude of the extracted
spectrogram is used as the feature for speech content inference.

6 DEEP-LEARNING-BASED PRIVACY
INFORMATION INFERENCE

6.1 Model Overview
To remove the requirement on training labels, our idea is to lever-
age domain adaptation techniques to transfer the speech knowl-
edge learned from other people’s labeled mmWave data to the
victim’s feature space in an unsupervised fashion. Regarding la-
beledmmWave data, the adversarymay obtain public audio datasets
and replay the audio samples to generate vibrations. The vibration
data can then be collected using the adversary’s mmWave device
and labeled by the adversary. We develop a deep-learning-based
framework to realize the proposed attack as illustrated in Figure 9.
The framework takes as input unlabeled mmWave spectrograms
𝑋𝑡 = {𝑥𝑡,1, ..., 𝑥𝑡,𝑛𝑡 } from the victim and labeled mmWave spectro-
grams 𝑋𝑠 = {𝑥𝑠,1, ..., 𝑥𝑠,𝑛𝑠 }, 𝑌𝑠 = {𝑦𝑠,1, ..., 𝑦𝑠,𝑛𝑠 } from other people.
The ground-truth labels of the victim’s mmWave spectrograms,
denoted as 𝑌𝑡 = {𝑦𝑡,1, ..., 𝑦𝑡,𝑛𝑡 }, may not be available. Both of the
unlabeled and labeled spectrograms are first encoded into a set of
low-rank speech representations using a representation extractor
𝐹 (·). To align the speech representations of the victim and other
people, the framework trained an unsupervised domain discrimi-
nator 𝐺 (·) to remove the differences between 𝐹 (𝑥𝑠 ) and 𝐹 (𝑥𝑡 ). A
speech classifier trained on 𝑋𝑠 and 𝑌𝑠 can then be applied to the
unlabeled spectrograms 𝑋𝑡 for speech content recognition.

6.2 Representation Extractor
We consider using MobileNet [43] as the representation extractor.
The key advantage of MobileNet over traditional architectures (e.g.,
ResNet and DenseNet) is the use of depth-wise separable convolu-
tion and inverted residual blocks, which significantly reduce the
number of weights and thus improve the speed of learning, espe-
cially when the network is large and deep. To improve the learning
efficiency, we resize spectrograms into 2D inputs with a size of
96 × 96, which have the same height and width. To feed the resized
spectrograms into MobileNet, which requires three input channels,
our representation extractor uses a convolution layer with 3 filters
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Figure 9: Architecture of our deep-learning framework based on domain adaptation.

to expand the spectrograms into representations with three chan-
nels. Then, a series of convolutional layers and MBConv blocks are
constructed to project the representations into a hidden space.

6.3 Speech Content Classifier
To infer privacy information in speech, the framework passes the
representations to a classifier 𝐺 (·) consisting of a global average
pooling layer, two fully-connected layers, and a SoftMax layer.
We use global average pooling [24] as the first layer to average
2D representations of each channel, which helps to avoid over-
fitting. Two fully-connected layers with 512 and 256 neurons are
further leveraged to process the averaged representations. We use
the representations of labeled spectrograms 𝑋𝑠 and their labels 𝑌𝑠
to optimize the classifier. The classification loss is defined as:

𝐿𝑔 = − 1
𝑛𝑠

𝑛𝑠∑︁
𝑖=0

𝑦𝑠,𝑖𝑙𝑜𝑔(𝐺 (𝐹 (𝑥𝑠,𝑖 ))), (10)

where 𝐹 (𝑥𝑠,𝑖 ) denotes the extracted representations from the spec-
trogram 𝑥𝑠,𝑖 . Note that our attack will train on labeled mmWave
spectrograms if the victim’s speech labels are available.

6.4 Unsupervised Domain Discriminator
To enable the classifier 𝐺 (·) applicable to a victim’s unlabeled data,
we design an unsupervised domain discriminator 𝐷 (·) as shown in
Figure 9. The discriminator is trained to classify the representations
as belonging to the victim or other people. The key difference be-
tween the discriminator and traditional classifier (e.g., 𝐺 (·)) is the
replacement of the first fully-connected layer with a gradient rever-
sal layer (GRL) [13]. During the forward propagation in training,
the GRL performs the same mapping as a fully-connected layer. But
during the back-propagation, it multiplies the gradient with a neg-
ative factor of −𝜆 before passing it to the preceding representation
extractor 𝐹 (·). By optimizing the representation extractor with the
“reversed” gradients, the extracted representations corresponding to
the victim and other people become similar, thereby aligning their
distributions. Besides the gradient reversal layer, we use the same
architecture of the speech classifier in the domain discriminator.
We optimize the domain discriminator based on a mixed dataset
of the labeled and unlabeled spectrograms, which we referred to
as domain dataset 𝑋𝑑 , 𝑌𝑑 . The domain labels 𝑌𝑑 are pseudo labels
generated based on the domain (i.e., the victim or other people) of
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Figure 10: Performance of speech eavesdropping attack using
tinfoil as the object to capture speech-induced vibrations.

each spectrogram. The domain loss is defined as:

𝐿𝑑 = − 1
𝑛𝑠 + 𝑛𝑡

𝑛𝑠+𝑛𝑡∑︁
𝑖=0

𝑦𝑑,𝑖𝑙𝑜𝑔(𝐺 (𝐹 (𝑥𝑑,𝑖 ))), (11)

where 𝑦𝑑,𝑖 is the domain label of 𝑥𝑑,𝑖 . 𝑛𝑡 and 𝑛𝑠 represent the num-
ber of spectrograms of the victim and other people, respectively.

6.5 Training Process
Our framework only trains the representation extractor and the
speech content classifier through backpropagation if the victim’s
speech labels are available. The network weights 𝜃 𝑓 and 𝜃𝑔 are op-
timized to reduce the classification loss 𝐿𝑑 defined in Equation 10.
In cases where the victim’s speech labels are not accessible, our
framework enables the domain discriminator (with weights 𝜃𝑑 ) and
performs domain adaptation based on the two loss functions de-
fined in Equation 10 and 11. Particularly, the discriminator is trained
with both labeled and unlabeled spectrograms with pseudo-domain
labels, while the classifier is still trained with labeled spectrograms.
With the gradient reversal layer, as we introduced in Section 6.4,
the representation extractor learns to maximize the domain loss
(i.e., confusing the domain discriminator), rendering similar repre-
sentations across the victim and other people. The overall loss for
optimizing the representation extractor can be formulated as:

𝐿𝑎𝑑𝑣 = 𝐿𝑔 − 𝜆𝐿𝑑 . (12)
By minimizing the 𝐿𝑔 while maximizing 𝐿𝑑 , the learned represen-
tations are indistinguishable between the two sets of spectrograms
while being distinct across speech content. Our framework trains
the three networks for 200 epochs using a batch size of 16. During
each epoch, we initially freeze the discriminator, 𝜃𝑑 , and update 𝜃 𝑓
and 𝜃𝑔 . This process accelerates the convergence of the classifier.
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(f) Paper bag (results)
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(g) Plastic storage bin (results)
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Figure 11: Performance of our attack using different types of common room objects to capture speech-induced vibrations.

Subsequently, we fix 𝜃𝑔 and update 𝜃 𝑓 and 𝜃𝑑 . To update 𝜃 𝑓 , 𝜃𝑔 ,
and 𝜃𝑑 , we employ three separate Adam optimizers [20] with an
initial learning rate of 0.01.

7 EVALUATION I: ATTACKS WITH IN-ROOM
MMWAVE DEVICES

Speech datasets. We validate the proposed attack by replaying
audio samples of 40 speakers (i.e., 34 males and 6 females) from
the AudioMNIST dataset [8] to generate speech-induced vibrations
by replaying the audio samples using a loudspeaker, which con-
tains 20, 000 samples of spoken digits (0∼9). The sound pressure
level measured at a distance of 0.3m to the loudspeaker is 70𝑑𝐵
unless specified. We show our studies on more sound volumes in
Section 7.5. The speakers have different ages (ranging from 22 to
41 years), gender (6 females and 34 males), and accent (e.g., Ger-
man, English, Chinese, etc). We focus on digits as they appear in
extensive sensitive information, including birthdays, SSN, etc.

Evaluation methodology. We evaluated our attack under the
two training requirements introduced in Section 3.3. 1) supervised
learning and testing:we used the collected data of a victim (mmWave
data with speech labels) for training and testing. The victim’s
mmWave data is split into a training set and a testing set with
a ratio of 6:4. As the deep learning model needs to use a sufficiently
large dataset for effective training, we mix the victim’s and other
people’s labeled data to train the representation extractors and
privacy information classifier as we introduced in Section 6. The
victim’s testing set is then used for evaluation. 1) unsupervised
learning and testing: we used a victim’s unlabeled data (mmWave
data) and other people’s labeled data (mmWave/audio data with
speech labels) for domain adaptation as we described in Section 6.
We do not involve the victim’s speech labels in this setting.

Evaluation metrics. 1) Attack success rate: For digit recogni-
tion, we report the attack success rate defined as the ratio between
the number of correctly classified mmWave samples of speech-
induced vibration against the total number of mmWave samples.
We consider evaluating our attack under both the aforementioned
supervised and unsupervised learning settings. 2) Peak signal-to-
noise ratio (PSNR): In addition, we use PSNR [14, 56] to quantify

the quality of speech captured in terms of mmWave data. A higher
PSNR means better speech quality. 𝑃𝑆𝑁𝑅 = 1 is used as the bench-
mark, which means the speech signals are clearly audible for human
perception [56] (e.g., after packing the signals into an audio file).

7.1 General Attack Performance
Setup.We use tinfoil as the room object to capture speech-induced
vibrations, which are generated by a loudspeaker under the ex-
perimental setup shown in Figure 6(a). We collect mmWave data
from 40 speakers in the AudioMNIST dataset. For each speaker,
we collect mmWave data of 50 repeats per digit, and we collected
20, 000 mmWave samples in total. We take turns considering each
speaker as the victim, and the remaining 39 speakers as the other
people whose mmWave data are accessible by the adversary.

Results of supervised learning. The speech recognition accu-
racies for the 40 speakers are shown in Figure 10. We find that our
attack has an average success rate of 93.2%. It indicates that our
attack is effective when labeled data are available for training.

Results of unsupervised learning. Next, we examine the
attack under unsupervised learning settings, where the victim’s
speech labels are not available. We show the success rates of the 40
speakers in Figure 10. We find that our attack can achieve average
success rates of 77.3% under this setting. The results demonstrate
that an adversary can still reveal the speech content without using
the victim’s speech labels for training.

Case Study: unsupervised learning with public audio data.
We further conduct a case study to evaluate our attack under an
even more practical scenario: the adversary directly uses the audio
samples of other people using the public audio dataset (AudioM-
NIST) with the proposed domain adaptation techniques, without
the need of collecting labeled mmWave data. Our attack has 72.1%
average attack success rate, which shows that it is also feasible to
use public audio data for domain adaptation.

7.2 Attack Using Different Room Objects
Setup. We examine the attack performance when using various
types of common roomobjects, including a cardboard box 0.3×0.3×0.4
𝑚3, a paper bag 0.4×0.15×0.4𝑚3, a plastic storage bin 0.54×0.39×0.24
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Figure 12: Ablation study: (a) attack performance with
(phased-MIMO) and without phased-MIMO (baseline); (b)
attack performance with (phased-MIMO+DA) and without
domain adaptation (phased-MIMO).

𝑚3, and a printer 0.4×0.35×0.4𝑚3 as shown in Figure 11(a), 11(b),
11(c) and 11(d). The distances between the mmWave device and
the object and between the object and the loudspeaker are all 0.5𝑚.
For each object, we collect mmWave data from 10 speakers (i.e.,
speakers 1 ∼ 10 in the AudioMNIST), with 50 repeats per digit. In
total, 5, 000 mmWave samples are collected for each object.

Results of the cardboard box.We show the success rates of
using a cardboard box for our proposed attack in Figure 11(e). Our
attack can achieve average success rates of 93.6% for supervised
learning scenarios. In addition, the success rate is 67.3% for unsu-
pervised learning. The results show the feasibility of eavesdropping
via cardboard boxes, which are common in indoor environments.

Results of the paper bag. We show the results of a paper bag
in Figure 11(f), another type of representative room object. When
the victims’ labeled data is used for training, the average success
rate is over 95.4%. For unsupervised learning without speech labels,
the attack success rate reaches 76.1%. The results show that our
speech eavesdropping can also be applied to paper bags.

Results of the plastic bin. The results of the plastic storage bin
are shown in Figure 11(g). The average success rate can reach up to
95.2% using labeled data from victims. The results of unsupervised
learning also achieve a high average success rate of 69.1%, showing
the attack effectiveness on plastic objects.

Results of the printer. We also make an evaluation of the
printer under both supervised and unsupervised learning cases. In
Figure 11(h), the attack with supervised learning has an average
accuracy of 64.5%. The accuracy of unsupervised learning case can
also reach an average of around 45.9%. Although the accuracy of the
printer is not high as other objects, it is still much higher than the
random guess with 10%. The lower success rate could be attributed
to the printer’s complicated inner structure.

7.3 Ablation Study
Setup. We examine the importance of phased-MIMO radar and
domain adaptation scheme, which are two key components in our
attack, through comparisons with a baseline without applying both
techniques. We use the data of 10 speakers collected from the tinfoil,
cardboard (card), paper bag (paper), plastic storage bin (plastic),
and printer with the same setup in Section 7.2.

Role of Phased-MIMO Radar. We demonstrate the attack per-
formance with and without the implementation of the proposed
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Figure 13: Performance of our attack under a long sensor-to-
object distance of 5m.

phased-MIMO radar. In Figure 12(a), it can be observed that the
average attack success rate is enhanced by 15.3% in the supervised
learning scenario. This enhancement is more pronounced for the
cardboard box (increased by 15.6%), plastic storage bin (increased
by 16.2%), and printer (increased by 25.2%), which possess greater
thickness and smaller vibration magnitudes. These findings indicate
that the proposed phased-MIMO radar can considerably improve
the attack success rates, especially for thicker objects.

Role of Domain Adaptation. The attack success rates with
and without domain adaptation in Figure 12(b). We observe that for
all five objects, the success rates are markedly enhanced after em-
ploying the domain adaptation technique, yielding an average im-
provement of 14.9%. These advancements indicate that the domain
adaptation technique more effectively aligns the representations of
the victim and other individuals.

7.4 Long-distance Attack
Setup.We further examine our attack under scenarios where the
mmWave device is at a long distance to the object. The experiment
setup is shown in Figure 13(a), and the radar-to-object distance
is 5m. mmWave data of the aforementioned cardboard box, paper
bag, and plastic storage bin are collected. For the printer, we do not
observe speech patterns at 5m, potentially due to the significant
attenuation caused by the embedded electronic components.

Deriving speech content. We show the performance of deriv-
ing speech content under such a long-distance attack scenario in
Figure 13(b), 13(c), and 13(d). The attack success rates are 92.1%,
93.2%, 94.1% for the cardboard box, paper bag, and plastic storage
bin. For unsupervised learning, our attack can still retain high suc-
cess rates of 63.6%, 74.2%, and 67.3%. We find that the success rates
of both supervised and unsupervised learning approximate the eval-
uation results under a radar-to-object distance of 0.5m in Section 7.2.
It confirms the effectiveness of the proposed phased-MIMO scheme
in retaining attack effectiveness under long distances.
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Table 3: PSNR comparison of four different objects under
object-to-sensor distances from 7m to 11m.

Distance
Object Tinfoil Cardboard Paper bag Plastic bin

7.0m 9.02dB 8.03dB 12.61dB 3.72dB
9.0m 5.27dB 4.53dB 6.85dB 0.83dB
11.0m 2.67dB 1.99dB 2.46dB 0.30dB

Speech quality assessment.We further study the maximum
distance of our attack by examining the PSNR under 7𝑚, 9𝑚, and
11𝑚. The PSNRs of the tinfoil and the three objects are shown in
Table 3. We observe that at a distance of 11𝑚, our attack still has
over 1𝑑𝐵 PSNR for tinfoil, cardboard box, and paper bag, meaning
that speech patterns can still be captured. For the plastic storage
bin, the maximum attack distance is around 9𝑚. Such long attack
distances allow effective attacks in common home and office rooms.

7.5 Attack under Different Practical Factors
We further study the attack performance under different realistic
attack scenarios, where the sound source (loudspeaker) and the
object are not aligned with each other. We examine the PSNR of
extracted speech signals (phases of mmWave data) under different
distances and angles. We consider three practical volumes for the
sound source, including 65𝑑𝐵, 70𝑑𝐵, and 75𝑑𝐵.

Speaker-to-object Distance. We show the PSNRs of the tinfoil
and paper bag under speaker-to-object distances of 0.1𝑚 ∼ 1𝑚
in Figure 14 (a) and (b), respectively. We observed that for tinfoil,
even with a low sound volume of 65𝑑𝐵, our attack still obtain PSNR
over 1 within a distance of 0.6𝑚. The PSNRs of the paper bag are
much higher for all distances and sound volumes. This is because
the lightweight surface of the paper bag is easier to vibrate. The
results show that our attack can elicit speech when the object is in
proximity (e.g., less than 1𝑚) to a sound source.

Speaker-to-object Orientation. Similarly, we examine the
PSNRs with the loudspeaker placed at different angles to the object
(i.e., 0◦ ∼ 50◦). As shown in Figure 15 (a), the attack achieves PSNRs
of around 2𝑑𝐵, 4𝑑𝐵, and 6𝑑𝐵 for the three sound volumes across
different angles. We have a similar observation for the paper bag
in Figure 15 (b), where the PSNRs are consistently over 6𝑑𝐵, 10𝑑𝐵,
and 11𝑑𝐵 for the three sound volumes at different angles. The con-
sistency of the PSNRs for different angles indicates the orientation
variations have a minor impact on the attack.

7.6 Attack on Live Human Speech
Setup.We further evaluate the effectiveness of our attack on the
live human speech by performing a case study. We use tinfoil as the
room object to pick up the speech of 10 human subjects (8 male and
2 female), whose sound volumes are around 70𝑑𝐵, a common sound
volume used in voice communication. The distance between the
human speaker and the tinfoil is 0.2𝑚, while the distance between
the tinfoil and the mmWave device is 0.5𝑚. The data collection
procedures were approved by our university’s IRB.

Results to attack live speech. Figure 16(b) shows the success
rates on live human speech. The average success rate is 87.2%. The
success rate is around 10% lower compared to those of using loud-
speakers as the sound source, which is partially caused by the lower
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Figure 14: Object-to-speaker distance study: different dis-
tances between the surface and the object (at a distance of
0.5𝑚 and a degree of 0◦ to the mmWave device).
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Figure 15: Object-to-speaker angle study: different angles
between the loudspeaker and the object (at a distance of 0.5𝑚
and a degree of 0◦ to the mmWave device).

sound volumes and training set with smaller sizes. Under an unsu-
pervised learning scenario, our attack achieves an average success
rate of 49.8% (the random guess is 10%). The results show the po-
tential of eliciting private information from live speech leveraging
our proposed eavesdropping attack scheme.

8 EVALUATION II: THRU-THE-WALL
ATTACKS

8.1 Attack Through Thick Wooden Wall
Setup. In this scenario, the same tinfoil is utilized as the target ob-
ject for capturing passive speech vibrations. As shown in Appendix
Figure 17, the tinfoil and the radar are separately placed on two
sides of a wall, which is made of composite wood boards with a
thickness of 0.33m. The distance between the radar/object and wall
is set to be 0.1m/0.2m and the loudspeaker is placed 0.5m away
from the tinfoil. During the experiment, we collect mmWave data
from 10 users in the AudioMNIST dataset and each digit is repeated
for 50 times. We take turns treating each speaker as the victim and
all 9 remaining speakers as the other people.

Result.The results of supervised and unsupervised speech recog-
nition are shown in Figure 18(a), respectively. The success rate of
supervised speech recognition can reach more than 92.9%. For more
challenging unsupervised scenarios, the success rate still remains
at a high level of more than 69.8%. Although the wooden wall
induces attenuation on both audio signals and mmWave signals,
high success rates in both supervised and unsupervised scenarios
demonstrate that thru-the-wall speech eavesdropping attacks can
be achieved through our attack scheme.
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Figure 16: Experimental setup and performance of attack on
live human speech-induced vibrations upon tinfoil.
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Figure 17: Experimental setup and attack performance of
eavesdropping through a thick (33cm) wooden wall.

8.2 Attack Through a Glass Wall
Setup.We also apply a similar setup with a glass wall as the barrier
to deploy our speech privacy eavesdropping attack, which is shown
in Figure 7(a). For the data collection, we follow the setup in 8.1.

Result. As shown in Figure 18(b), supervised speech recognition
delivers a high success rate of more than 80.1%. For the results
of the unsupervised scenario, the speech recognition accuracy is
about 53.3%. The possible reason for the performance degradation
on glass walls compared to the wooden wall is that the glass barrier
holds a relatively smooth and flat surface, which helps to reflect
the majority of the mmWave signal before it can reach the room
objects and bring back passive vibration.

9 RELATEDWORK
Eavesdropping using microphones. An adversary may deploy
or compromise audio recording devices in a target environment
(e.g., hidden microphones, mobile phones) to eavesdrop on voice
communications [21, 29]. Different from these traditional attacks,
which directly capture sounds, our attack uses mmWave sensing to
remotely turn room objects into sound sensors. It exhibits two key
advantages over microphone-based eavesdropping: (1) by using
mmWave/electromagnetic signals, our attack can bypass many de-
fenses preventing audio eavesdropping. For example, our attack can
sense through vacuum-insulation glasses/walls, which is impossi-
ble for eavesdropping via microphones. (2) with phased-MIMO, our
attack works through a much longer distance compared to sounds,
and it does not suffer from sound loss/interference.

Eavesdropping using vision sensors. Besides audio recording
devices, research studies demonstrate the possibility of capturing
speech-induced vibrations using vision sensors, such as lasers [48],
high-speed cameras [11], and Lidars [41]. For example, Davis et
al. [11] utilizes a high-speed camera to capture video streams to re-
cover vibrations from some room objects (e.g., a bag of chips). These
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Figure 18: Attack performance of eavesdropping through a
glass wall and a thick (33cm) wooden wall.

vision-based attacks exploit surface vibrations induced by speeches,
which share some similarities with our attack. However, these at-
tacks all rely on a visual line-of-sight between the laser/camera and
the surface, which precludes scenarios with visual occlusion. Dif-
ferently, our attack does not have such a limitation. We confirmed
this via through-wooden(opaque)-wall attacks in Section 8.1.

Speech sensing using radio frequency signals. Researchers
have exploited the wireless nature of radio frequency (RF) signals
for speech eavesdroppings, such as those using WiFi [53], Ultra-
Wideband Inpulse Radio [54], and mmWave [6, 22, 35]. For example,
Wei et al. examine the variations of channel state information (CSI)
in WiFi signals to derive patterns of speeches played by loudspeak-
ers. UWHear [54] utilizes an impulse Radio Ultra-Wideband-based
radar to sense vibrations upon the surface of loudspeakers to infer
speech content. More recent studies show the potential of mmWave
sensing to capture vibrations on human throat [22] or replayed by
the smartphone earpiece [6]. These prior attacks show promising
results, but they are limited to sensing conductive vibrations prop-
agating through a solid medium. Differently, we target vibrations
induced by airborne sounds, which is far more challenging yet
practical. Ozturk et al. [35] show the potential of using mmWave
to sense surface vibrations generated by audio chirps. It does not
reveal privacy speech leakage. In addition, the high propagation
loss rooted in mmWave limits the effective sensing distance and
precludes attacks through walls. Differently, in this work, we design
a software-defined phased-MIMO radar to significantly extend the
distance and penetration capability of mmWave sensing.

10 DEFENSE AGAINST MMWAVE-BASED
EAVESDROPPING

Defense against in-room attack. An adversary might compro-
mise mmWave/5G-enabled IoT devices to initiate an attack. One
intuitive solution is to isolate the devices from the Internet or
other communication channels during critical voice communication.
However, this approach may also impact the functionality of ap-
plications, such as remote/virtual meetings, since high-throughput
wireless communication is a key feature of mmWave. Another po-
tential method involves programmatically injecting random ampli-
tude and phase noise into the mmWave signals at the receiver. This
approach can effectively scramble mmWave signals associated with
high-frequency vibrations while preserving normal communication
and sensing functionalities (e.g., localization and gesture recogni-
tion). Furthermore, constraining the sampling rate of mmWave
sensing devices could limit their ability to pick up human speech.
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Human speech generally has frequency responses above 85𝐻𝑧. Ac-
cording to the Nyquist theorem, limiting the device’s sampling
rate to below 170𝐻𝑧 would render it incapable of capturing speech
signals, although the mmWave sensing capability may be degraded.

Defense against thru-the-wall attack. RF shielding using
electromagnetic absorbers [39] could provide an effective defense
against the thru-the-wall attacks proposed in this paper. For in-
stance, pyramidal absorbers [37] typically absorb electromagnetic
signals within a broad frequency range [45, 46] (e.g., 0.8 ∼ 110 GHz),
thereby blocking the mmWave signals and preventing the attack.
Various other more commonmaterials, such as carbon, metallic, and
metal oxide, can be also utilized to isolate the room from mmWave
signals [16]. Additionally, constructing walls using multiple lay-
ers of varying materials and thicknesses can effectively attenuate
mmWave signals and change the direction of the transmitted wave,
making mmWave-based eavesdropping challenging. The selection
of materials and thicknesses can be based on the permittivity and
attenuation characteristics of specific building materials [16]. Fur-
thermore, topological periodic patterns can be etched onto themetal
layers of the wall to create a frequency-selective surface [19, 32, 58],
which allows waves of particular frequencies (e.g., WiFi signals,
Bluetooth) to pass through to maintain application functionali-
ties while blocking waves of other frequencies to defend against
mmWave eavesdropping attacks launched from the outside.

11 DISCUSSION
Attack Complexity vs. Payload. In this paper, we demonstrate
both in-room and through-the-wall attacks with different levels of
complexity. Our evaluations presented in Sections 7 and 8 reveal
that in-room scenarios yield higher attack success rates (e.g., 93.2%
for tinfoil), particularly under the unsupervised learning setting
(e.g., 77.2%). In comparison to the thru-the-wall attacks, in-room
attacks necessitate more complicated procedures, such as compro-
mising and reprogramming mmWave-enabled IoT devices. The
increased complexity of in-room attacks produces higher attack
success rates, which can be considered as the attack’s payload. In
contrast, through-the-wall attacks are less complex and are more
favorable for adversaries. These attacks require only a commer-
cial mmWave device, without accessing or modifying any devices
within the room. The wall’s occlusion also prevents users from
noticing the attack, resulting in higher stealthiness. But this type
of attack must contend with the significant signal propagation loss
caused by the wall. Our results in Section 8 show that the attack can
maintain an accuracy of 85.1% for supervised learning using tinfoil,
though the accuracy declines to 53.3% for unsupervised learning.
With such a capability, the adversary still has a substantial likeli-
hood of inferring sensitive information. In general, a higher attack
complexity yields a larger payload for the proposed attack.

Potential Attack Improvement. As the first work in this line
of research, we conduct a thorough investigation of speech pri-
vacy attacks using the proposed phased-MIMO radar sensing tech-
niques in various practical scenarios. Our study demonstrates the
feasibility of recognizing isolated words, specifically simple dig-
its, which are often used to reveal and quantify potential speech
leakage [6, 31, 60]. We believe that extending the dataset (e.g., by
incorporating a larger vocabulary) will further enhance our attack

performance. However, collecting a large labeled mmWave dataset
might necessitate substantial manpower, making it challenging
in practice. Thus, we intend to develop a speech reconstruction
algorithm capable of converting the vibrations into audio signals
resembling microphone data. This conversion can be achieved us-
ing deep encoder-decoder networks, such as autoencoders [17] and
U-nets [40]. By utilizing the reconstructed signals, we can employ
pre-trained speech recognition models (e.g., Google Speech-to-Text,
Microsoft Azure) built with extensive speech datasets.

Thru-the-wall Attack for Classified Environments. As an
initial demonstration, we show that our phased-MIMO-based at-
tack can extract speech through glass and wooden walls with 92.9%
and 80.1% success rates (supervised learning), respectively. Since
our attack is deployed on a commercial mmWave device with a
relatively smaller antenna array (i.e., 3 transmitter antennas and
4 receiver antennas), it may not be effective for classified environ-
ments equipped with thick acoustic insulation layers (e.g., mineral
wool, fiberglass, or acoustic foam) and multi-layered walls (e.g.,
Mass-loaded vinyl). The substantial wall thickness and complex
materials can significantly attenuate mmWave signals. To enhance
the attack’s effectiveness, the adversary could improve the phased-
MIMO radar sensing approach by utilizing a larger transmitter array
or employing the TDM phased-MIMO used in our paper, but with
additional time slots. This enables the formation of a larger virtual
array, facilitating the generation of a more focused beam to counter
the severe attenuation caused by through-the-wall propagation.

12 CONCLUSION
In this paper, we proposed a remote, long-distance, and thru-the-
wall eavesdropping attack that elicits privacy information from
minute vibrations upon objects’ surfaces through mmWave sensing.
To overcome the challenge of high propagation loss of mmWave, we
designed a software-defined high-resolution phased-MIMO radar
that allows mmWave signals to pick up minute speech-induced
vibrations. We further developed an attack system that integrates
object identification/localization, time-frequency feature extraction,
and deep learning techniques to infer sensitive speech content. As
mmWave/5G devices are increasingly deployed, we believe the
attack remotely turning room objects into passive “microphones”
via mmWave signals will be a critical security concern.
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